7 Terms to avoid if you need to discuss renewables

Do you find yourself discussing about Renewable Generation Technologies often?

This post can help you avoid incorrect expressions!

You might well agree that renewables are changing rapidly. Technology has not only become more competitive, but has also solved many issues or challenges that simply are not applicable today.

So, the language we use for evolving technology has to evolve too, right?

Image by Daino_16 on freeimages

Image by Daino_16 on freeimages

1. Expensive

There certainly are some expensive renewable technologies, and certainly expensive renewable projects.

But in general, Sigue leyendo

Anuncios

Offshore wind to float

In a recent article published in Renewable and Sustainable Energy Reviews, the challenges for the future of off-shore wind were discussed, considering Spain as a case.

The need for floating structures is a clear cornerstone for the development of off-shore wind in countries like Spain, where swallow waters are not convenient or restricted.

The development of these technologies to a commercial level will bridge the difference from on-shore connected windpower and off-shore or off-grid generation. Energy harvesting as discussed in this post with multi-use offshore platforms can be envisioned as a next step.

Picture from Yarik Mishin on freeimages.com

Picture from Yarik Mishin on freeimages.com

Excluding the technological and environmental challenges, there are other hurdles.

As it is highlighted usually, the unstable regulatory framework causes a lack of interest for investment, specially if paired with complicated administrative procedures.

NZEB + EV: The decarb combo

Are you aware of these stats?

  1. Buildings account for 40 % of energy consumption and 36 % of energy emissions (EU data)
  2. Road transport accounts for 25 % of energy consumption and 20 % of energy emissions (EU data and EU stats)

Then, what happens when we combine NZEB buildings (net Zero Energy Buildings) with local renewable generation and EVs (Electric Vehicles) charging in these NZEB?

NZEB & EV.png

It’s obvious… -> We can decarbonize 65 % of the energy system!* Sigue leyendo

How to crowdfund unsubsidized solar

This solar power plant is an important milestone in Spain!

Since April this year, the new 2 MW crowdfunded solar park in Spain from Som Energía has been producing power. It is unique because it has no subsidies and because the energy is sold to the retail cooperative, so the price is supplied at cost* to the investors.

Image Share by Som Energía from Alcolea plan

Image Shared by Som Energía from Alcolea plan

I’m proud of having participated in this project. It’s sustainable, doesn’t need subsidies and also a good investment. The funding will be returned with no interest, but the benefit is through the reduced energy costs in the retail monthly invoice.

Living in a flat with little space for solar panels, I find it very difficult and inefficient to install one or a couple of self-consumption solar panels. So this is a natural option, to team-up with other people to own together renewable power generation. And it avoids facing the so-called tax on the sun (discussed some time ago here).

Of course there are other investment options like Yieldcos (I have shares from Saeta Yield myself). Or simply buying 100% renewable electricity from the retailer. But helping build this small project with a cooperative feels closer to owning the plant. And power generation not only owned by big corporations is also positive, as has been the case in Germany. We can say it’s a good example of the sharing economy, too…

What other options do you see to participate as an individual in the energy transition?

*Actual calculation is 36 €/MWh, which means 6 €/MWh below the market before taxes and network charges.

Sailing 100% renewable

You might have read an old post on electric boats and sea energy harvesting before. I described then, electrifying boat transport as one of the ways to make islands 100% renewable.

Electric sailboats have a lot of sense, and are becoming more and more popular. It’s a fantastic sensation to sail, without the sound of a motor, and for many of us, turning the diesel engine on is to be avoided as much as possible. Moreover, even when the engine is only used for a little time, we strongly feel the pollution.

Precisely because for a sailboat the engine is not used that much, having electric propulsion and battery storage is very reasonable. It can be charged at the normal port outlet, regenerating while sailing, or with a small wind generator and solar panels. Compared to the need of refueling at a port gas-station, the convenience is increased greatly, and also the cost to the owner.

Maintenance of an electric motor is simpler because of less moving parts, the size of the motor is reduced, and the battery can be placed as ballast, incorporated in the hull. Sailboats already have batteries and often the motors have to run just to charge them. By increasing the size of the batteries and having renewable charging (solar/wind), this is automatically taken care of.

Besides, the performance is increased, having more torque at lower rpm, and electric motors are more efficient that the internal combustion counterparts.

Finally, regarding the noise, see this video comparing the diesel engines to electric. Together with the smoke/pollution, this is the most dramatic difference.

In summary, it will amaze me if in 5 or ten years all 95% of all new sailboats are electric. And I hope to sail on one of those soon.

20160730 Sunset desde barco

Sunset near Cala D’Or in Mallorca

If Energythaca were an island, sailing there would be on a sailboat. That was the image on my first post on the blog.

I guess it is an appropriate post arriving from vacations…

“Baseload” is an obsolete pre-energy-transition concept?

“Baseload” is so much twentieth century… It is a concept widely used when demand was not flexible. When there was an uncontrollable consumption and industries were not adapting their production to availability of abundant energy. When the goal was to have nuclear and other conventional power plants running 24/7.

In the twenty-first century, the demand curve is not going to be flat, but is going to be variable and smartly adapted to supply of renewable energy.

base-1188327-1919x1350

The “base load” game. Image from Maria Yan (Yanovski-55776) on freeimages.com

Let’s look at the energy demand to challenge this concept…

Sigue leyendo

Future superavits in Energythaca

On one hand, the rise of renewable energy, even before the 100% goal, will bring superavit of power. This means there will be excess power that is not required in the system. It already is happening and it will be even more so. This power can be stored, but of course, using it directly is more efficient and thus, preferable.

On the other hand, the penetration of robotics and software will change the jobs available for humans, as is in discussion in Davos these days. This means there will also be a superavit of productivity.

Overflow

Overflow. Image from Andrea Kratzenger on freeimages.com

We will have Superavit of Power and Superavit of Productivity, that we must use wisely to Sigue leyendo