Publication: Superconducting Fault Current Limiter

Recently we got published an article on short circuit current limiting on Elevier’s Electric Power Systems Research, were I’m a co-author;

Cover image Electric Power Systems Research

“Performance analysis of a Superconducting Fault Current Limiter in a power distribution substation”, Volume 136, July 2016, Pages 89–99

Antonio Colmenar-Santos, , J.M. Pecharromán-Lázaro, Carlos de Palacio Rodríguez, Eduardo Collado-Fernández

The results of the research and pilot project for this technology are promising. The short circuit current limiting with a superconducting system (SFCL-Superconducting Fault Current Limiter) is an example of FACTS (Flexible AC Transmission System) for the Smart Grid. It allows a real-time response, that is an automatic reaction, reducing short circuit currents, thus avoiding damage to equipment. This enables a more meshed operation while the energy losses are kept low.

The paper presents the operational benefits and performance of an installed system in a distribution network. These benefits are translated into economic terms, with the goal of setting a target price for economic feasibility of such systems. While the difference between the economic target of 100 k€ and the cost of the real project is tenfold, it remains a trigger for market adoption. Moreover, it is likely that economies of scale and technology improvements drive the implementation cost down in the coming years.

The consequence of widespread use of SFCL would be more reliable and resilient distribution networks. We will see more of this coming, in the near future.

The complete article is available for some days on the link: http://authors.elsevier.com/a/1SbPa1M7~0UanK

Anuncios

Artículo sobre Electrónica de potencia y Smart Grids

Las aplicaciones de electrónica de potencia están presentes en todos los niveles de la red eléctrica, desde grandes instalaciones de generación o de transmisión eléctrica hasta en pequeños sistemas de baja tensión. Es interesante ver cómo ya la mayor parte de la energía que consumimos ha pasado por sistemas de electrónica de potencia, como inversores, convertidores, variadores, etc. Y dentro de poco será el total de la energía, especialmente si aumenta la generación renovable y el autoconsumo, que utiliza intensivamente electrónica de potencia.

Modulo IGBT Por: ArséniureDeGallium (2005) (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

Modulo IGBT Por: ArséniureDeGallium (2005) (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)%5D, via Wikimedia Commons

Sobre este tema escribí un artículo en la revista Energética s. XXI, en el que planteo que conforme van utilizandose cada vez más estas soluciones, la red se vuelve más smart grid. Esto es así porque permiten mayor control, aumentan la eficiencia (i.e. con variadores), la calidad de red (i.e. con filtros activos), la flexibilidad (i.e. con SVCs), la fiabilidad (i.e. con convertidores de almacenamiento), la capacidad (i.e. con sistemas HVDC), y la sostenibilidad (i.e. con inversores solares). Menciono estos valores porque forman parte de las definiciones típicas de smart grid de fabricantes, reguladores y empresas de servicios.

Por tanto, el uso de electrónica de potencia hace más inteligente a la red y es por tanto una tecnología clave de las smart grids. Además, con ella no sólo se construye la smart grid “bottom-up” (como con las smart homes, que planteaba en este articulo anterior) sino simultaneamente en todos los niveles de la misma,